skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shakhbandaryan, Andre"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper considers the problem of kernel regression and classification with possibly unobservable response variables in the data, where the mechanism that causes the absence of information can depend on both predictors and the response variables. Our proposed approach involves two steps: First we construct a family of models (possibly infinite dimensional) indexed by the unknown parameter of the missing probability mechanism. In the second step, a search is carried out to find the empirically optimal member of an appropriate cover (or subclass) of the underlying family in the sense of minimizing the mean squared prediction error. The main focus of the paper is to look into some of the theoretical properties of these estimators. The issue of identifiability is also addressed. Our methods use a data-splitting approach which is quite easy to implement. We also derive exponential bounds on the performance of the resulting estimators in terms of their deviations from the true regression curve in general $$L_p$$ norms, where we allow the size of the cover or subclass to diverge as the sample size n increases. These bounds immediately yield various strong convergence results for the proposed estimators. As an application of our findings, we consider the problem of statistical classification based on the proposed regression estimators and also look into their rates of convergence under different settings. Although this work is mainly stated for kernel-type estimators, it can also be extended to other popular local-averaging methods such as nearest-neighbor and histogram estimators. 
    more » « less